Явление приливного захвата

Если изолированная планета шарообразной формы покрыта тонким слоем жидкости, форма поверхности жидкости будет стремиться к сферической в силу принципа минимума потенциальной энергии. Если же рядом с планетой есть другие тела, они будут искажать форму поверхности жидкости. Это связано с приливными силами, которые возникают за счет того, что разные участки жидкости притягиваются этому телу с различными силами. Такие силы являются причиной приливов и отливов на поверхностях планет, почему и получили свое название.

В задаче рассматривается следующая система. Два однородных шарообразных тела (планеты) массами m (малое тело) и M (большое тело, M>m) движутся по круговым орбитам вокруг общего центра масс. Расстояние между центрами тел равно L, радиус большого тела равен R ($L\gg R$), а малое тело можно считать точечным. Поверхность большого тела покрыта тонким слоем жидкости плотность ρ , форма поверхности которой является объектом изучения.

Вам предстоит определить форму поверхности большого тела при синхронном вращении, когда угловая скорость орбитального вращения тел совпадает с угловой скоростью вращения большого тела вокруг собственной оси. Далее вам нужно описать динамику приливного захвата, то есть процесса перехода к синхронному вращению.

Часть А. Синхронное вращение (2.7 балла).

В этой части задачи рассматривается синхронное вращение. Большое тело вращается вокруг своей оси с угловой скоростью, равной угловой скорости орбитального вращения тел ω .

A1 Получите точное выражение для угловой скорости орбитального вращения ω . Ответ выразите через **0.7** G, m, M и L.

Перейдём в неинерциальную систему отсчёта, связанную с центром большого тела и вращающуюся так, что центр малого тела в ней неподвижен. Напомним выражение для ускорения в неинерциальной системе отсчёта с началом в точке O, движущимся с ускорением \vec{a}_0 , координатные оси которой вращаются с угловой скоростью $\vec{\omega}$ и угловым ускорением $\vec{\varepsilon}$:

$$\vec{a}_{\text{OTH}} = \vec{a} - \vec{a}_0 + \omega^2 \vec{r}_\perp - \left[\vec{\varepsilon} \times \vec{r}\right] - 2 \big[\vec{\omega} \times \vec{v}_{\text{OTH}}\big].$$

Здесь \vec{a} — ускорение в инерциальной системе отсчёта, \vec{r}_{\perp} — компонента радиус-вектора частицы, перпендикулярная оси вращения, а $\vec{v}_{\text{отн}}$ — скорость частицы относительно неинерциальной системы отсчёта. Во всех пунктах задачи ограничивайтесь только первыми тремя слагаемыми:

$$\vec{a}_{\text{OTH}} pprox \vec{a} - \vec{a}_0 + \omega^2 \vec{r}_{\perp}.$$

Задача является плоской, поэтому считайте, что $\vec{r}_{\perp} = \vec{r}$, если обратное не оговорено.

Обозначим центр большого тела за O. Далее во всех пунктах задачи, если обратное не оговорено, исследуется форма поверхности большого тела в сечении, перпендикулярном угловой скорости орбитального вращения, содержащем малое тело и точку O. Рассмотрим точку P на поверхности большого тела, лежащую на прямой, проходящей через точку O и образующей угол θ с линией, соединяющей меньшее тело с точкой O. Обозначим расстояние между точками O и P за $r(\theta)$.

L

A2 Получите точное выражение для разности потенциалов гравитационного поля малого тела **0.2** $\Delta \varphi_{\rm rp} = \varphi_{\rm rpP} - \varphi_{\rm rpO}$ в точках P и O. Ответ выразите через G, m, L, θ и $r(\theta)$.

А3 Получите точное выражение для разности потенциалов сил инерции $\Delta \varphi_{\text{ин}} = \varphi_{\text{ин}P} - \varphi_{\text{ин}O}$ в точках P и O. **0.5** Ответ выразите через G, m, M, L, θ и $r(\theta)$.

Представим форму поверхности в виде $r(\theta)=R+h(\theta)$, где $h(\theta)\ll R$, а $h(\pi/2)=0$.

Условие: страница 1 из 4

А4 Получите зависимость $h(\theta)$. Ответ выразите через m, M, R, L и θ . Максимально упростите ваш ответ. Качественно изобразите форму поверхности в рассматриваемом сечении. На этом же рисунке изобразите невозмущённую форму поверхности.

Примечание: воспользуйтесь следующим приближением:

$$\frac{1}{\sqrt{1+a^2-2a\cos\theta}} \approx 1 + a\cos\theta + \frac{a^2(3\cos^2\theta - 1)}{2}$$

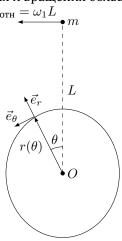
Часть В. Осциллирующая поверхность (3.8 балла).

Мы рассмотрели поведение системы в установившемся режиме. Далее будем изучать переходные процессы, которые приводят к выравниваю угловых скоростей орбитального движения и вращения большого тела вокруг своей оси. $v_{\text{отн}} = \omega_1 L$

В этой части задачи угловая скорость вращения большого тела равна Ω и считается постоянной. Перейдём в неинерциальную систему отсчёта, связанную с точкой O и вращающуюся с угловой скоростью Ω . Будем рассматривать то же сечение большого тела, что и в части A. Введём для данной части задачи следующее обозначение:

$$\omega_1 = \omega - \Omega$$

Для решения задачи нам понадобится компонента силы F_{τ} , направленная вдоль вектора $\vec{e_{\theta}}$. Она определяется силами инерции и гравитационной силой малого тела, и зависит от угла θ и от времени t. Будем отсчитывать время t от момента, показанного на рисунке.



В1 Покажите, что касательную компоненту силы $F_{\tau}(t,\,\theta)$, действующую на частицу массой Δm , находящуюся **0.5** на поверхности большего тела под углом θ , можно представить в виде:

$$F_{\tau}(t, \theta) = \Delta m \alpha \sin(2\omega_1 t - 2\theta)$$

Найдите α . Ответ выразите через G, m, L и $r(\theta)$.

Примечание: воспользуйтесь результатами, полученными при решении пункта А4.

Из закона изменения момента импульса для элемента поверхности жидкости можно получить, что его уравнение движения эквивалентно уравнению вынужденных колебаний:

$$\Delta mR^{2} \left(\ddot{\theta} + 2\gamma \dot{\theta} + \omega_{0}^{2} (\theta - \theta_{0}) \right) = F_{\tau}(t, \theta) R,$$

где γ и ω_0 – постоянные величины, θ_0 – положение элемента жидкости в равновесии. Считайте, что $\omega_0\gg\sqrt{Gm/L^3}$. Во всех пунктах считайте, что $\theta-\theta_0\ll 1$, поэтому справедливо приближение $F(t,\,\theta)\approx F(t,\,\theta_0)$.

B2 Покажите, что зависимость $\theta(t,\theta_0)$ имеет следующий вид:

0.8

$$\theta(t) = \theta_0 + A\sin(2\omega_1 t - 2\theta_0 - \varphi_0)$$

Найдите A и φ_0 . Ответы выразите через $G, m, L, \gamma, \omega_0, \omega, \Omega$ и θ_0 .

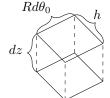
Далее для удобства будем использовать угол $\varphi_1=2\theta_0+\varphi_0$ и записывать выражение для $\theta(t)$ в следующем виде:

$$\theta(t,\theta_0) = \theta_0 + A\sin(2\omega_1 t - \varphi_1)$$

Для определения зависимости $h(t,\theta)$ представим её в следующем виде:

$$h(t,\theta) = h_0 + h'(t,\theta)$$
 $h'(t,\theta) \ll h_0$

Рассмотрим прямоугольный параллелепипед со сторонами h, $Rd\theta_0$ и dz, соответствующий углу θ_0 , где dz, θ_0 и $d\theta_0$ - постоянные величины. Объём воды в этом параллелепипеде равен:



$$dV = hRd\theta_0 dz.$$

Этот объем меняется, поскольку жидкость втекает и вытекает через грани hdz параллелепипеда с разными скоростями, что приводит к изменению высоты h. Считайте, что через грани $hRd\theta_0$ жидкость не течёт. Жидкость несжимаема.

- **В3** Получите выражение для скорости роста высоты $\dot{h'}(t,\theta_0)$ в момент времени t при угле θ_0 . Ответ выразите **0.4** через h_0 и $\frac{d\dot{\theta}}{d\theta_0}$
- **В4** Считая, что амплитуда колебаний h' одинакова для всех значений θ_0 , получите зависимость h(t). Ответ **0.3** выразите через h_0 , A, ω_1 , φ_1 и t.
- **B5** Для момента времени t определите значения углов θ_0 , соответствующих максимальному значению $h(t,\theta_0)$. **0.4** Ответы выразите через ω_1 , t и φ_0 .

Для поиска момента сил, действующих на большое тело, потребуется рассмотреть произвольное сечение большего тела. Будем отсчитывать угол β от оси вращения большего тела. Тогда радиус сечения большего тела в перпендикулярной плоскости равен $r=R\sin\beta$. Считайте, что для описания зависимости $\theta(t,\theta_0,\beta)$ и $h'(t,\theta_0,\beta)$ достаточно везде заменить радиус R на расстояние до оси вращения $R\sin\beta$.

В6 Найдите момент сил M_z , действующий со стороны малого тела на поверхность большого относительно **1.4** оси z. Ответ выразите через G, m, ρ , R, h_0 , L, A и φ_0 .

Часть С. Приливной захват в системе Земля-Луна (3.5 балла).

Приливным захватом называют выравнивание угловых скоростей орбитального вращения и вращения вокруг собственной оси. В этой части задачи вам предстоит определить параметры ω_0 и γ для модели, рассмотренной в части **B**, а также оценить время, в течении которого происходит приливной захват в системе Земля-Луна.

Считайте известными следующие данные:

- 1. масса Земли $M = 5.97 \cdot 10^{24}$ кг;
- 2. масса Луны $m = 7.36 \cdot 10^{22}$ кг;
- 3. радиус Земли $R = 6.38 \cdot 10^6$ м;
- 4. плотность воды $\rho = 1.00 \cdot 10^3 \text{ кг/м}^3$;
- 5. гравитационная постоянная $G = 6.67 \cdot 10^{-11} \; \mathrm{H \cdot m^2/kr^2}$;
- 6. сейчас расстояние между Землей и Луной составляет $L_0 = 3.84 \cdot 10^8$ м;
- 7. сейчас Земля вращается вокруг собственной оси с угловой скоростью $\Omega_0 = 7.27 \cdot 10^{-5} \; \mathrm{c}^{-1}$.
- **C1** Найдите орбитальную угловую скорость вращения $\omega_{\text{синх}}$ и расстояние $L_{\text{синх}}$ между Землёй и Луной при **0.8** синхронном вращении. Выразите ответы через $m, M, R, G, L_0, \Omega_0$ и найдите их численные значения. *Примечание*: при синхронном вращении моментом импульса Земли, связанным с вращением вокруг ее оси, можно пренебречь.
- **C2** Расстояние между Землей и Луной увеличивается со скоростью $\dot{L}_0 = 1$ см/год. Найдите величину среднего углового ускорение Земли $\dot{\Omega}_0$. Выразите ответ через $m,M,\,R,\,G,\,L_0,\,\Omega_0,\,\dot{L}_0$ и найдите его численное значение.

Для описания переходного процесса необходимы численные значения параметров ω_0 и γ . Для их определения считайте известным следующее:

- 1. сейчас положение прилива отстаёт от Луны на угол $\beta=3^\circ$ в направлении её вращения относительно Земли. Отставание означает, что $\omega_0>2|\omega_1|$;
- 2. сейчас разность высот прилива и отлива составляет 0.24 m;
- 3. средняя глубина мирового океана составляет $h_0 = 3.74$ км.

Условие: страница 3 из 4

C3 Найдите численные значения ω_0 и γ .

0.8

C4 В рамках описанной модели найдите угловое ускорение Земли $\dot{\Omega}_{0(\text{мод})}$, которое получается из результатов пункта В6. Сравните его со значением $\dot{\Omega}_0$, полученным в пункте С2 и сделайте вывод о применимости рассматриваемой модели (считайте модель применимой, если Ω_0 и $\Omega_{0(\text{мод})}$ отличаются не более, чем в 10 раз).

Приливной захват в системе Земля-Луна можно разделить на два этапа:

- 1. относительно быстрый переход к орбитальному вращению с угловой скоростью $\omega_{\text{синх}}$, при котором расстояние от Земли до Луны практически совпадает с установившимся $L=L_{\text{синx}}$;
- 2. длительный процесс выравнивания угловых скоростей орбитального вращения и вращения Земли вокруг своей оси. Характерное время второго процесса τ_2 можно считать временем переходного к приливному захвату процесса.

C5 Оцените численное значение τ_2 . Ответ выразите в годах.

0.7

Условие: страница 4 из 4