A1 1.50 Выразите угловое ускорение стержня $\ddot{\varphi}$ через $\varphi$, $l$ и $g$. Покажите, что зависимость угла наклона $\varphi$ от времени задается выражением $\varphi=Ae^{t/\tau}+Be^{-t/\tau}$, где $A$ и $B$ – постоянные, зависящие от начального положения и начальной угловой скорости стержня, а $\tau$ – характерное время падения. Выразите $\tau$ через $l$ и $g$.
A2 0.50 Пусть теперь мальчик пытается поддерживать длинную тонкую палку в вертикальном положении на своей руке. Как только палка начинает падать, например, влево, он двигает руку влево на еще большее расстояние так, что центр масс палки оказывается правее её точки опоры. Вследствие этого момент силы тяжести начинает вращать палку вправо, уменьшая ее скорость вращения, направленную влево. Оцените, палку какой длины мальчик может держать вертикально, если время его реакции примерно равно $\tau_r=0{,}2~\text{с}$. (Время реакции – это временная задержка между командой, посланной мозгом рукам, и соответствующим движением рук.)
A3
0.50
Люди и птицы удерживают себя в стоячем положении похожим образом. Они двигают точку опоры (точку внизу ступни, где приложена нормальная сила реакции опоры), например, изменяя угол между ступней и ногой, чтобы противостоять падению верхней части тела.
Маленькая птичка высоты $l=6~\text{см}$ может стоять на ногах. Оцените сверху её время реакции.
A4 1.00 Равновесие на велосипеде тоже поддерживается путём переноса точки опоры, лежащей на линии между точками соприкосновения колес с землёй. Эта линия может быть перемещена поворотом руля во время езды. Оцените минимальную скорость велосипедиста $v_m$, при которой он может держать равновесие таким способом. Считайте, что для него характерное время падения такое же, как и у стержня длиной $L=2~\text{м}$; расстояние между осями колёс $d=1~\text{м}$.
B1
1.00
Предположим, что изначально канатоходец стоял в почти идеальном равновесии
($\alpha_1=\alpha_2=0$). Из-за неустойчивости равновесия он медленно начинает падать по часовой стрелке. Он это замечает, когда $t=t_0$, $\alpha_1=\alpha_2=\alpha_0>0$. Он быстро изгибается, чтобы перестать падать. Считайте, что угол $\beta$ мгновенно принимает значение $\beta_0$. Выразите новые значения углов $\alpha_1$ и $\alpha_2$ через $\beta_0$ и $\alpha_0$.
B2 0.50 Таким образом, канатоходец теперь согнут и поддерживает ту же форму тела ($\beta=\beta_0$) в течение времени $T_b$, после которого он почти мгновенно выпрямляется ($\beta=0$). Он хочет снова встать вертикально $\alpha_1=\alpha_2=0$. Должен ли он был сгибаться по часовой стрелке ($\beta_0>0$) или против часовой стрелки ($\beta_0<0$)? Объясните свой ответ.
B3 1.00 Теперь будем считать, что $\alpha_0\ll{\beta_0}$. Сразу после того, как он выпрямился, ни его угловая скорость ($\dot{\alpha}_1=\dot{\alpha}_2$), ни угол $\alpha_1$ не равны нулю (равными нулю они станут значительно позже). Найдите значение выражения $\dot{\alpha}_1/\alpha_1$. Ответ выразите через $H$ и $g$.
C1 1.50 Считайте, что в момент $t=T/2$ маятник был неподвижен и наклонён под малым углом $\varphi_0$. Нарисуйте график зависимости угла наклона $\varphi$ от времени, и определите угловое смещение маятника $\Delta{\varphi}$ в момент $t=T$, то есть, $\Delta{\varphi}=\varphi(T)-\varphi(T/2)$. Можно считать, что $\Delta{\varphi}\ll{\varphi_0}$.