With a constant voltage across the lamp, the equation for the concentration of electrons turns to:\[\frac{\mathrm dn_\mathrm e}{\mathrm dt}=-\beta n_\mathrm e+\alpha\frac{V_{\min}^2}{F}n_\mathrm e=\left[\alpha\frac{V_{\min}^2}{F}-\beta\right]n_\mathrm e. \]The lamp will light up if the expression in parentheses is positive. Thus, the condition for $V_{\min}$ is:\[\alpha\frac{V_{\min}^2}{F}=\beta\implies\]
The equilibrium voltage across the lamp in this case must be $V_\min$. Indeed:
The equilibrium current through the lamp will be equal to the current through the source, i.e.:
If the current through the lamp is $I$, then the voltage drop across the lamp is:\[V=\mathcal E-rI,\]and then from the equation for lamp resistance:\[R=\frac{F}{n_\mathrm e}=\frac{\mathcal E-rI}{I}\implies\]
Voltage drop across the lamp is:\[V=\mathcal E-rI=\mathcal E-r\frac{\mathcal E n_\mathrm e}{rn_\mathrm e+F}\implies\]
Substituting the expressions obtained in the previous task into the equation for the electron concentration:\[0=-\beta n_{0}+\alpha\frac{V_0^2Fn_{0}}{(rn_{0}+F)^2}\cos^2\omega t.\]When averaging over time:\[\langle \cos^2\omega t\rangle_t=\dfrac{1}{2},\]so then:\[0=-\beta n_{0}+\alpha\frac{V_0^2Fn_{0}}{2(rn_{0}+F)^2}\\\beta=\alpha\frac{V_0^2F}{2(rn_{0}+F)^2}\\ rn_{0}+F=V_0\sqrt{\frac{\alpha F}{2\beta}}\implies\]
Let's substitute\[n_{\mathrm e}(t)=\frac{1}{r}\left(V_0\sqrt{\frac{\alpha F}{2\beta}}-F\right)+n_1\cos(2\omega t+\phi)\]into the expression for electron concentration. Because we only need terms with $\cos(2\omega t)$, we will drop other ones:\[\begin{aligned}n_1\frac{\mathrm d\left[\cos(2\omega t+\phi)\right]}{\mathrm dt}&=-\beta n_1\cos(2\omega t+\phi)+\alpha\frac{V_0^2Fn_{0}}{2\left(F+rn_{0}\right)^2}\cos(2\omega t)=\\&=-\beta n_1\cos(2\omega t+\phi)+\frac{\beta}{r}\left(V_0\sqrt{\frac{\alpha F}{2\beta}}-F\right)\cos(2\omega t).\end{aligned}\]Since it's a linear trigonometric differential equation, it's convenient to rewrite it in complex form:\[2i\omega n_1e^{i \phi}=-\beta n_1e^{i\phi}+\frac{\beta}{r}\left(V_0\sqrt{\frac{\alpha F}{2\beta}}-F\right),\\n_1=\frac{\sqrt{2\beta F}\left(V_0\sqrt{\alpha}-\sqrt{2\beta F}\right)}{2r\sqrt{\beta^2+4\omega^2}},\quad -\phi=\arg\left(\beta+2i\omega\right)=\operatorname{arctg}\frac{2\omega}{\beta}.\]
Since resistance is inversely proportional to electron concentration, we can rewrite $\delta$ in terms of concentration:\[\begin{aligned}\delta &=\frac{2n_1}{n_0}=\\&=2\cdot\frac{\sqrt{2\beta F}\left(V_0\sqrt{\alpha}-\sqrt{2\beta F}\right)}{2r\sqrt{\beta^2+4\omega^2}\cdot \dfrac{1}{r}\left(V_0\sqrt{\dfrac{\alpha F}{2\beta}}-F\right)}=\\&=\frac{2\beta}{\sqrt{\beta^2+4\omega^2}}\overset{\delta\ll1}\approx\frac{\beta}{\omega}.\end{aligned}\]
So, the smallness condition turns into: