Logo
Logo

Collisions in plasma

A1  ?? Write the motion equations for both particles and show that this system is equivalent to the interaction of both particles with the effective Columb's potential with a center similar to the center of mass $CM$.

The 2nd particle acts on the 1st one with the force
\[\vec{F}_{2 \to 1} = \frac{1}{4 \pi \varepsilon_0} \frac{Z_1 Z_2 e^2}{|\vec{r}_1-\vec{r}_2|^3} \cdot \left( \vec{r}_1 - \vec{r}_2 \right),\]
so
\[m_1 \ddot{\vec{r}}_1 = \frac{1}{4 \pi \varepsilon_0} \frac{Z_1 Z_2 e^2}{|\vec{r}_1-\vec{r}_2|^3} \cdot \left( \vec{r}_1 - \vec{r}_2 \right), \quad m_2 \ddot{\vec{r}}_2=-\frac{1}{4 \pi \varepsilon_0} \frac{Z_1 Z_2 e^2}{|\vec{r}_1-\vec{r}_2|^3} \cdot \left( \vec{r}_1 - \vec{r}_2 \right).\]

Answer: \[m_1 \ddot{\vec{r}}_1 = \frac{1}{4 \pi \varepsilon_0} \frac{Z_1 Z_2 e^2}{|\vec{r}_1-\vec{r}_2|^3} \cdot \left( \vec{r}_1 - \vec{r}_2 \right), \quad m_2 \ddot{\vec{r}}_2=-\frac{1}{4 \pi \varepsilon_0} \frac{Z_1 Z_2 e^2}{|\vec{r}_1-\vec{r}_2|^3} \cdot \left( \vec{r}_1 - \vec{r}_2 \right).\]

The position $\vec{r}_{CM}$ of the center of mass we calculate with the definition and the position $\vec{r}$ of the 1st particle relative to $\vec{r}_{CM}$ is $\vec{r}=\vec{r}_1 - \vec{r}_{CM}$:
\[\vec{r}_{CM}=\frac{m_1 \vec{r}_1 + m_2 \vec{r}_2}{m_1 + m_2}, \quad \vec{r} = \vec{r}_1 - \vec{r}_{CM} = \left( \vec{r}_1 - \vec{r}_2 \right) \frac{m_2}{m_1 + m_2}.\]

For $\vec{r}_1 -\vec{r}_2$ we have this differential equation:
\[ \ddot{\left( \vec{r}_1 - \vec{r}_2 \right)} = \frac{1}{4 \pi \varepsilon_0} \frac{Z_1 Z_2 e^2}{|\vec{r}_1 - \vec{r}_2|^3} \frac{m_1 + m_2}{m_1 m_2} \left( \vec{r}_1 - \vec{r}_2 \right), \]
then for $\vec{r}$ we have
\[\ddot{\vec{r}} = \frac{1}{4 \pi \varepsilon_0} \frac{Z_1 Z_2 e^2}{|\vec{r}|^3} \frac{m_2^2}{m_1(m_1+m_2)^2}\vec{r}.\]

Finally, the 2nd Newton's law for the 1st particle in the frame of the center of mass could be written as an interaction with the Coulomb field centered at $\vec{r}_{CM}$:
\[m_1\ddot{\vec{r}}= \frac{1}{4 \pi \varepsilon_0} \frac{Z_1 Z_2 e^2}{|\vec{r}|^3} \frac{m_2^2}{(m_1 + m_2)^2} \vec{r} \]

A2  ?? How does the angular momentum of the first particle behave?

\[
\begin{cases}
\vec{L} = m_1 \vec{v} \times \vec{r}\\
\dot{\vec{L}} = \vec{M} = \vec{r} \times \vec{F} \propto \vec{r} \times \vec{r} = 0
\end{cases}
\quad \Rightarrow \quad L = m_1 \dot{\theta} r^2 = m_1 v_1' b',\]
where
\[ v_1' = v_1 - v_1 \frac{m_1}{m_1+m_2} = v_1 \frac{m_2}{m_1 + m_2}, \quad b' = b\frac{m_2}{m_1 + m_2} \]

Answer: \[ L = m_1 \dot{\theta} r^2 = m_1 v_1 b \frac{m_2^2}{(m_1+m_2)^2} \]

A3  ?? Write the second Newton's law in terms of $r$, $\theta$ and their time derivatives $\ddot{r}$ and $\dot{\theta}$.

Answer: \[m_1(\ddot{r} - \dot{\theta}^2 r) = \frac{1}{4 \pi \varepsilon_0} \frac{Z_1 Z_2 e^2}{r^2} \frac{m_2^2}{(m_1 + m_2)^2}\]

A4  ?? Introduce the Binet substitution $u = 1/r$ and obtain the differential equation for $u$ as a function of $\theta$ in the form of a harmonic oscillator:
\[u'' + Au + B = 0,\]
where $u''$ is the second derivative of $u$ with respect to the angle $\theta$.

Let's express $u''$ from $\ddot{r}$ and $u$:
\[u'=\frac{du}{d\theta} = -\frac{dr}{d \theta} \cdot \frac{1}{r^2} = -\frac{dr}{dt} \frac{dt}{d \theta} \frac{1}{r^2} = -\frac{m_1\dot{r}}{L}\]
\[u''=\frac{du'}{d\theta} = -\frac{m_1 d(\dot{r})}{L \, d \theta} = -\frac{m_1 \ddot{r}}{L\dot{\theta}} = -\frac{m_1^2 \ddot{r}}{L^2 u^2} \quad \Rightarrow \quad \ddot{r} = -\frac{u'' u^2 L^2}{m_1^2}\]

Then the 2nd Newton's law in terms of $u$ is
\[-\frac{u'' u^2 L^2}{m_1} - \frac{L^2 u^3}{m_1} = \frac{Z_1 Z_2 e^2}{4 \pi \varepsilon_0} \frac{m_2^2}{(m_1 + m_2)^2} u^2 \]

Answer: \[u''+u + \frac{Z_1 Z_2 e^2}{4 \pi \varepsilon_0 v_1^2 b^2} \frac{ (m_1+m_2)^2}{m_1 m_2^2} = 0\]

A5  ?? Express the deflection angle $\chi$ in the frame of the center of mass through $b$, $v_1$, $m_{1,2}$ and $Z_{1,2}$.

Since we have the harmonic oscillator equation we have the solution $u + B = C\cos \theta$ where $\theta=0$ is the direction to the apsis. Thus,
\[ \cos \left( \frac{\pi}{2}-\frac{\chi}{2} \right) = \frac{B}{C}.\]
Now we have to find the value of $C$. Let's write the equation
\[ \dot{\theta}r^2 = \frac{L}{m_1} \quad \Rightarrow \quad \frac{d \theta}{du} \frac{du}{dr} \frac{dr}{dt} r^2 = \frac{L}{m_1}.\]
With $du/dr=-1/r^2$ l and additional $dr/dt\simeq v_1'$ at the infinity we have
\[\frac{v_1'}{u'}=\frac{L}{m_1} \quad \Rightarrow \quad u'(u=0) = \frac{m_1 v_1'}{L}.\]

From the oscillation equation $u' = -C \sin \theta$ and then $(u-B)^2 + (u')^2 = C^2$. Writing this expression for $u=0$ (at the infinity) we have
\[C = \sqrt{\frac{m_1^2 v_1'^2}{L^2} + B^2}.\]

Finally,
\[\sin \frac{\chi}{2} = \frac{1}{\sqrt{1+\frac{m_1^2 v_1'^2}{L^2B^2}}} \quad \Rightarrow \quad \tan \frac{\chi}{2} = \frac{LB}{m_1v_1} = \frac{Z_1 Z_2 e^2}{4 \pi \varepsilon_0 m_1 v_1^2 b} \]

Answer: \[\chi = 2 \arctan \frac{Z_1 Z_2 e^2}{4 \pi \varepsilon_0 m_1 v_1^2 b}\]

A6  ?? Find the $b_{90}$. Express you answer by $Z_1$, $Z_2$, $m_1$ and $v_1$.

For the $\chi = 90^\circ$ we know that $\tan( \chi/2 )= 1$. Thus,
\[b_{90} = \frac{Z_1 Z_2 e^2}{4 \pi \varepsilon_0 m_1 v_1^2}\]

Answer: \[b_{90} = \frac{Z_1 Z_2 e^2}{4 \pi \varepsilon_0 m_1 v_1^2}\]

A7  ?? In this question we work in the lab frame where the target was originally motionless.

What is the difference $\Delta p(b)$ of the momuntum of the first particle projection onto the direction of the original motion? Work with the small angle approximation $b \gg b_{90}$. Express your answer by the original momentum of the particle $p$, $m_{1,2}$, $b$ and $b_{90}$.

In the lab frame the velocity of the 1st particle was $\vec{v}_1=(v_1,0)^T$ and after the scattering it becomes
\[\vec{v}_1' = \begin{pmatrix}
v_1\frac{m_1}{m_1 + m_2} + v_1 \frac{m_2}{m_1 + m_2} \cos \chi \\
v_1 \frac{m_2}{m_1 + m_2} \sin\chi
\end{pmatrix}\]

\[\Delta p = m_1(v_{1x}'-v_1) \simeq -p \frac{m_2}{m_1 + m_2} \frac{\chi^2}{2} \simeq - p\frac{m_2}{m_1 + m_2} \frac{2 b_{90}^2}{ b^2} \]

Answer: \[\Delta p\simeq - p\frac{m_2}{m_1 + m_2} \frac{2 b_{90}^2}{ b^2} \]

B1  ?? Find the equation for $\Delta p$ in approximation $M \gg m$. Express the answer by $p$, $b_{90}$, $n_0$, $l$ and $\Lambda$.

\[\Delta p = - \int\limits_{b_{90}}^{\lambda_D}p \frac{m_2}{m_1 + m_2} \frac{2b_{90}^2}{b^2} 2\pi b l \, db \simeq -p \cdot 4 \pi b_{90}^2 l n_0 \ln \Lambda\]

Answer: \[\Delta p = -p \cdot 4 \pi b_{90}^2 l n_0 \ln \Lambda\]

B2  ?? Show, that the probability $P_\text{any}$ that the electron's velocity is any is unity, i.e.
\[P_\text{any} = \int\limits_{-\infty}^{+\infty} dv_x \int\limits_{-\infty}^{+\infty} dv_y \int\limits_{-\infty}^{+\infty} dv_z f(v_x, v_y, v_z) = 1. \]

Since we have infinite limits, we can shift the coordinate system to make the intergrant symmetrical:
\[P_\text{any} = \int \left( \frac{m}{2\pi k_\text{B}T} \right)^{3/2} \exp \left( -\frac{mv^2}{2k_\text{B}T} \right) d^3\vec{v}.\]
Accorrding to the spherical symmertry let's intergrate over the thin spheres: $d^{3}\vec{v} = 4\pi v^2 \, dv$:
\[P_\text{any} =4\pi \left( \frac{m}{2\pi k_\text{B}T} \right)^{3/2} \int\limits_0^{\infty} \exp \left( -\frac{mv^2}{2k_\text{B}T} \right) v^2 dv.\]
With nondementiolizing $u=v\sqrt{\dfrac{m}{2k_\text{B}T}}$ we have:
\[P_\text{any} = \frac{4}{\sqrt{\pi}} \int\limits_0^{\infty} e^{-u^2}u^2 du = -\frac{2}{\sqrt{\pi}} \int\limits_0^{\infty} u \, d\left( e^{-u^2}\right) = 0+\frac{2}{\sqrt{\pi}}\int\limits_0^{\infty}e^{-u^2} du\]

The integral $\int\limits_{-\infty}^{\infty} e^{-u^2} \, du$ is symmterical over $u \to -u$ then $\int\limits_{0}^{\infty} e^{-u^2} \, du = \sqrt{\pi}/2$ and $P_\text{any}=1$.

B3  ?? Find the mean value of the velocity $\langle v \rangle$. Ignore any corrections associated with the presence of $v_d$.

\[\langle v \rangle = \int \left( \frac{m}{2\pi k_\text{B}T} \right)^{3/2} v \exp \left( -\frac{mv^2}{2k_\text{B}T} \right) d^3\vec{v} \simeq 4\pi \left( \frac{m}{2\pi k_\text{B}T} \right)^{3/2} \int\limits_0^{\infty} \exp \left( -\frac{mv^2}{2k_\text{B}T} \right) v^3 dv\]
Now it's more convinent to use the substitution $u=\dfrac{mv^2}{2k_\text{B}T}$
\[ \langle v \rangle = \sqrt{\frac{8k_\text{B}T}{\pi m}} \int\limits_0^{\infty} e^{-u} u \, du = -\sqrt{\frac{8k_\text{B}T}{\pi m}} \int\limits_0^{\infty} u \, d\left( e^{-u} \right) =\sqrt{\frac{8k_\text{B}T}{\pi m}} \int\limits_0^{\infty}e^{-u} du = \sqrt{\frac{8k_\text{B}T}{\pi m}}\]

Answer: \[\langle v \rangle = \sqrt{\frac{8 k_\text{B}T}{\pi m}}\]

B4  ?? Estimate the mean force $\langle \vec{F} \rangle$ that acting on the volume $\Delta V$ from the ions. For simplicity, assume that $\Lambda$ is independent of the electron velocity $v$ and use the value of $\Lambda$ for $v=\langle v \rangle$. Also, ignore that $|\vec{v}|$ (not a vector, just it's absolute value) depends on the $\vec{v}_d$. Finally, you understand approximations properly if
\[ \langle \vec{F} \rangle \propto \vec{v}_d \int u^3 e^{-u^2} du.\]

Note, that all of these approximations don't change the crux of the phenomena, the only thing that might be affected is a different numerical coefficient before.

On the electron moving with the velocity $\vec{v}$ acts the force
\[\vec{F}(\vec{v}) =-4\pi mn_0\vec{v}_1 v_1 b_{90}^2 \ln \Lambda\]

Then the mean (over electrons) force acting on the one electron from the volume $\Delta V$ is
\[ \langle \vec{F} \rangle = -4\pi mn_0 b_{90}^2 \ln \Lambda \int (\vec{v}_d + \vec{u}) ue^{-\frac{mu^2}{2k_\text{B}T}}\, d^3\vec{u}. \]

The second term is equal to zero according the symmetry. The first term could be found with methods which we already developed:
\[\vec{v}_d\int\limits_0^{\infty} 4 \pi u^3 e^{-\frac{mu^2}{2k_\text{B}T}} du = \vec{v}_d 8\pi \left( \frac{2k_\text{B}T}{m} \right)^2 \int\limits_0^{\infty} x e^{-x} dx = \vec{v}_d 8\pi \left( \frac{2k_\text{B}T}{m} \right)^2 \]

Finally,
\[\langle \vec{F} \rangle = -32 \vec{v}_d \sqrt{\frac{2\pi k_\text{B}T}{m}} mn_0 b_{90}^2 \ln \Lambda \]

Answer: \[\langle \vec{F} \rangle = -32 \vec{v}_d \sqrt{\frac{2\pi k_\text{B}T}{m}} mn_0 b_{90}^2 \ln \Lambda \]

B5  ?? Write the second Newton's law for $\Delta V$. Consider, that the interaction with neighboring volumes of the electron gas is canceled out.

Answer: \[ n\Delta V m \ddot{\vec{r}} = -32\dot{\vec{r}} n \Delta V \sqrt{\frac{2\pi k_\text{B}T}{m}} mn_0 b_{90}^2 \ln \Lambda - en\Delta V \tilde{E} e^{-i \omega t}\]

B6  ?? Find the current density $\vec{j}_t$ in the model under the external field $\tilde{E} e^{-i \omega t}$.

Let's substitute the periodic motion $\vec{v} = \vec{v}_0 e^{-i\omega t}$:
\[-i\omega m \vec{v}_0 e^{- i \omega t} = -32 \vec{v}_0 e^{- i \omega t} \sqrt{\frac{2\pi k_\text{B}T}{m}} mn_0 b_{90}^2 \ln \Lambda - e\tilde{E} e^{- i \omega t} \]
then
\[\vec{v}_0 = \frac{e\tilde{E}}{i \omega m - 32 \sqrt{\frac{2\pi k_\text{B}T}{m}} mn_0 b_{90}^2 \ln \Lambda} \quad \Rightarrow \quad \vec{j}_t =\frac{ne^2}{32 \sqrt{\frac{2\pi k_\text{B}T}{m}} mn_0 b_{90}^2 \ln \Lambda - i \omega m} \tilde{E} e^{-\omega t}\]

Answer: \[ \vec{j}_t =\frac{ne^2}{32 \sqrt{\frac{2\pi k_\text{B}T}{m}} mn_0 b_{90}^2 \ln \Lambda - i \omega m} \tilde{E} e^{-\omega t}\]

B7  ?? With $\sigma = \mathfrak{Re} \left\lbrace \dfrac{j}{\tilde{E}e^{-i\omega t}}\right\rbrace$ find the conductivity $\sigma$ of the plasma.

\[ \sigma = \operatorname{\mathfrak{Re}}\left\lbrace \frac{ne^2}{32 \sqrt{\frac{2\pi k_\text{B}T}{m}} mn_0 b_{90}^2 \ln \Lambda - i \omega m} \right\rbrace = ne^2\frac{32 \sqrt{\frac{2\pi k_\text{B}T}{m}} mn_0 b_{90}^2 \ln \Lambda }{ \omega^2 m^2 + \left(32 \sqrt{\frac{2\pi k_\text{B}T}{m}} mn_0 b_{90}^2 \ln \Lambda \right)^2}\]

Answer: \[ \sigma = ne^2\frac{32 \sqrt{\frac{2\pi k_\text{B}T}{m}} mn_0 b_{90}^2 \ln \Lambda }{ \omega^2 m^2 + \left(32 \sqrt{\frac{2\pi k_\text{B}T}{m}} mn_0 b_{90}^2 \ln \Lambda \right)^2}\]