Условия локального минимума функции $f(x)$ – это:\[\begin{cases}f'(x)=0,\\f''(x) > 0.\end{cases}\]В рассматриваемом случае:\[\begin{cases}\dfrac{\partial E}{\partial P}=\alpha(T-T_0)P+\beta P^3+\gamma P^5,\\\dfrac{\partial^2 E}{\partial P^2}=\alpha(T-T_0)+3\beta P^2+5\gamma P^4,\end{cases}\]поэтому условие локального минимума преобразуется к виду:
Для спонтанной поляризации необходимо, чтобы $P\ne0$. Это возможно только при $T < T_0$. Действительно:
Решаем уравнение:\[-\alpha(T_0-T)+\beta P^2+\gamma P^4=0.\]Это квадратное уравнение относительно $P^2$ имеет корни:\[P_0^2=\frac{1}{2\gamma}\left[-\beta\pm\sqrt{\beta^2+4\alpha\gamma(T_0-T)}\right].\]Поскольку $P^2 > 0$, необходимо выбрать знак $+$. Итого:
При $T\to T_0$ выражение под корнем можно раскрыть в ряд Тейлора:\[\begin{aligned}P_0&=\pm\sqrt{\frac{1}{2\gamma}\left[\beta\sqrt{1+\frac{4\alpha\gamma(T_0-T)}{\beta^2}}-\beta\right]}=\\&=\pm\sqrt{\frac{\beta}{2}\left[1+\frac{2\alpha\gamma(T_0-T)}{\beta^2}+\ldots-1\right]}=\\&=\pm\sqrt{\frac{\alpha\Delta T}{\beta}}.\end{aligned}\]
Поскольку в приближении предыдущего пункта $\gamma\ll \beta^2/\alpha$, можно сделать вывод, что на масштабах $P\sim\sqrt{\alpha/\beta}$ последним слагаемым в выражении $(1)$ для энергии можно пренебречь. Тогда в присутствии поля:\[W=-EP-\frac{1}{2}\alpha(T_0-T)P^2+\frac{1}{4}\beta P^4\implies\\\implies \frac{\partial W}{\partial P}=-E-\alpha\Delta T\cdot P+\beta P^3.\]Чтобы найти $\chi$, подставим $P=\sqrt{\dfrac{\alpha\Delta T}{\beta}}+\chi E$ в уравнение $\dfrac{\partial W}{\partial P}=0$ и раскроем до первого порядка малости по $E$:\[\begin{aligned}0&=-E-\alpha\Delta T\left(\sqrt{\dfrac{\alpha\Delta T}{\beta}}+\chi E\right)+\beta \left(\sqrt{\dfrac{\alpha\Delta T}{\beta}}+\chi E\right)^3=\\&=-E-\alpha\Delta T\left(\sqrt{\dfrac{\alpha\Delta T}{\beta}}+\chi E\right)+ {\alpha\Delta T}\left(\sqrt{\dfrac{\alpha\Delta T}{\beta}}+3\chi E\right)=\\&=-E+2\alpha \Delta T\chi E\implies \chi=\frac{1}{2\alpha\Delta T}.\end{aligned}\]