Logo
Logo

Двухкомпонентные смеси

Разбалловка

A1  1,00 Дано $p_A$, $p_B$, $x_A$ , $x_B$. Найти молярные доли компонент смеси в газообразной фракции ($y_A$ и $y_B$).

A1. 1 $$
y_A = \frac{{p_A x_A} }{ {p_A x_A+p_B x_B}} \\
y_B = \frac{{p_B x_B} }{ {p_A x_A+p_B x_B}} \\
$$
1,00
A2  0,50 Пусть для жидкости известны молярная теплота парообразования $\lambda$ и температура кипения жидкости $t$ при атмосферном давлении $P_0$. Найдите зависимость давления насыщенного пара чистой жидкости от температуры $P(T)$.

A2. 1 $$
P = P_0 e^{\frac{\lambda}{ R}(\frac{1 }{ t}-\frac{1}{T})}
$$
0,50
A3  1,00 Выразите $p_A/p_B$ при температуре $T$ через температуры кипения чистых жидкостей $t_A$ и $t_B$ (при атмосферном давлении), их молярные теплоты парообразования $\lambda_A$ и $\lambda_B$.

A3. 1 $$
\frac{p_A }{ p_B} (T) = e^{\frac{\lambda_A }{ R} (\frac{1 }{ t_A}-\frac{1 }{ T}) - \frac{\lambda_B }{ R} (\frac{1 }{ t_B}-\frac{1 }{ T})}
$$
1,00
A4  2,00 Считая $\lambda_A=\lambda_B=\lambda$, найдите температуру кипения двухкомпонентной смеси: $T(\lambda,t_A,t_B,x_B)$.

A4. 1 Начальное уравнение:
$$
P_0 = P_0 e^{\frac{\lambda_A }{ R} (\frac{1 }{ t_A}-\frac{1 }{ T})} x_A + P_0 e^{\frac{\lambda_B }{ R} (\frac{1 }{ t_B}-\frac{1 }{ T})} x_B
$$

Error propagation , если неправильно A2. Обязательно должны быть учтены молярные доли веществ в формуле.
1,00
A4. 2 $$
T = \frac{\lambda }{ R} \ln^{-1} ({x_B e^\frac{\lambda }{ {Rt_B}}+(1-x_B)e^\frac{\lambda }{ {Rt_A}}})
$$
1,00
A5  1,50 Считая температуру двухкомпонентной системы $T$ постоянной, изобразите на графиках зависимости $P(x_B) , P(y_B)$ и $y_B(x_B)$.

A5. 1 3 × 0,50
A6  0,60 Какая $x_B$ будет достигнута после первой конденсации ($N=1$)?

A6. 1 $$ x_B \approx 0.02
$$
0,60
A7  1,40 Какая $x_B$ будет достигнута после того как процедура повторится $N=10$ раз, $N= 10^6$?

A7. 1 $$
\frac{{1-x_B(N)}}{{x_B(N)}} = {(\frac{p_A}{p_B})^N} \frac{{1 - x_B(0)}}{{x_B(0)}}
$$
0,60
A7. 2 $$
x_B \approx 0.91
$$
0,40
A7. 3 $$
x_B \approx 1.00
$$
0,40
A8  2,00 Найдите, во сколько раз к этому моменту уменьшилось общее количество жидкости?

A8. 1 $$
d(x_B V n_L) = -dv \frac{{p_B x_B}}{{RT} } \\
d(x_A V n_L) = -dv \frac{{p_A x_A}}{{RT} }
$$

Формулы должны учитывать, что количество уходящего вещества пропорционально парциальному давлению его пара, и не содержать физических ошибок
0,50
A8. 2 $$
\frac{dV }{ V} = \frac{dx_B }{ x_B} + \frac{{2 dx_B} }{ {1-x_B}}
$$

Балл ставится, если формула приведена к интегрируемому виду (в нужных переменных)
1,00
A8. 3 $$
V \approx 0.38 V_0
$$
0,50