Logo
Logo

Моделирование фазового перехода

A0  0.20 Определите размер решетки $L$, температуру $T$ и магнитное поле $h$, заданные в программе в качестве параметров по умолчанию.

__
Значения $L =100$, $T=10$, $h=0$. 0.20
A1  0.40 Как время исполнения программы $\tau$ зависит от размера сетки $L$ и от числа повторений алгоритма $I$? Сколько исполнялось $I = 500$ шагов алгоритма на решетке размера $L = 1000$?

__
Оценка $\tau \sim I L^2$ 0.20
Число $\tau$ от 10 до 30 часов. 0.20
A2  0.50 Пронаблюдайте, как распределение магнитных моментов меняется в зависимости от температуры. Оцените температуру $T_c$, при которой происходит фазовый переход.

__
Оценка $T_c \in [2;\,3]$. 0.50
A3  0.20 Какое число шагов алгоритма $I$ требуется, чтобы от начального случайного распределения получить равновесное распределение при $T= 1.5$, $h=0.1$? Размер решетки по умолчанию.

__
Значение $I \in[30, 100]$. 0.20
A4  0.70 В этой задаче придется много работать со случайными величинами. Чтобы получить разумные ответы, важно правильно оценивать случайные погрешности. В качестве примера рассмотрим сетку размера $L = 5$ при температуре $T = 3.66$. Как погрешность определения $m^2$ зависит от числа шагов алгоритма $I$? Определите $m^2$ с погрешностью не выше $0.01$.

__
Оценка погрешности как $1/\sqrt{I}$ 0.30
Значение $m^2 \in [0.19,\, 0.21]$. 0.40
B1  0.50 Найдите значение $U_0$ параметра Биндера при $T \to 0$ и значение $U_\infty$ при $T \to \infty$.

__
Значение $U_0 = 2/3$. 0.20
Значение $U_\infty = 0$. 0.30
B2  1.00 Как средний квадрат намагниченности $m^2$ намагниченности зависит от температуры при $L = 10$? Постройте график в зависимости от температуры. Диапазон температур выберите так, чтобы график содержал все характерные особенности функции.

__
Измерения квадрата намагниченности при температурах $T \in [0.2,\,9]$. 10 × 0.05
На график нанесено не менее 7 точек. 0.30
Оформление графиков (масштаб + подписаны оси). Ставится только при наличии точек. 0.20
B3  4.00 Используя параметр Биндера, как можно точнее определите температуру $T_c$, при которой происходит фазовый переход. Оцените погрешность найденного значения $T_c$.

__
Для измерения намагниченностей используется как минимум $I = 1000$ итераций алгоритма. 0.50
Идея проводить измерения $U$ при как минимум двух разных значениях размера $L_1$ и $L_2$. 0.30
Точки для $U$ при размере $L_1$ и при $T\in [2,\,3]$. 6 × 0.10
Использовано третье значение размера $L_3$ для увеличения точности. 0.30
Точки для $U$ при размере $L_2$ и при $T\in [2,\,3]$. 6 × 0.10
График зависимостей $U(T)$ для двух разных размеров решетки. 0.40
Получено значение $T_c = 2.23 \pm 0.15$ ( $T_c \in [2.08,\,2.38]$) 1.00
Оценка погрешности $T_c$ 0.30
B4  3.00 Пусть система находится в парамагнитной фазе (температура больше температуры фазового перехода $T_c$). Исследуйте, как магнитная восприимчивость $\chi$ зависит от температуры. Предложите вид зависимости и определите ее параметры.

__
Для измерения намагниченности используются разумные значения магнитного поля (условия вида $h \sim 0.1$ или $m \sim 0.1$) 0.30
Значения магнитной восприимчивости при различных температурах 7 × 0.10
Предложен вид зависимости магнитной восприимчивости от температуры. 0.40
Построен линеаризованный график $\chi(T)$ в координатах, отвечающих выбранной зависимости 0.50
Значения параметров зависимости 2 × 0.30
Вывод о применимости зависимости вида $\chi(T) \sim (T- T_0)^{-1}$ или $\chi(T) \sim 1/T$ 0.50
C1  2.50 Определите значение корреляционной длины для направления вдоль стороны квадратной решетки. В каком диапазоне расстояний применима экспоненциальная зависимость?

__
Точки для зависимости $C(l)$ при выбранной температуре. 15 × 0.05
График зависимости $\ln C $ от $l$ 0.50
Оформление графика (масштаб + оси). Ставится только если на график нанесены точки. 0.25
Указан диапазон применимости экспоненциальной зависимости $r \in [3, \, 15]$. 0.50
Значение корреляционной длины $\xi$ 0.50