Logo
Logo

Поля заряженных тел

Разбалловка

A1  0.20 Найдите напряженность поля в центре заряженного кольца.

1 $$E=0
$$
0.20
A2  0.30 Найдите потенциал на оси кольца на расстоянии $x$ от его центра.

1 $$\varphi=\frac{\lambda{R}}{2{\epsilon_0}\sqrt{R^2+x^2}}
$$
0.30
A3  0.30 Найдите модуль напряженности поле на оси кольца на расстоянии $x$ от его центра.

1 $$E=\frac{{\lambda}xR}{2{\epsilon_0}(x^2+R^2)^\frac{3}{2}}
$$
0.30
A4  0.60 При каком значении $x$ напряженность поля на оси кольца максимальна? Найдите эту максимальную напряженность.

1 $$x^2=\frac{R^2}{2}
$$
0.30
2 $$\pm|x|
$$
0.10
3 $$E_{max}=\frac{\lambda}{3\sqrt{3}R\epsilon_0}
$$
0.20
A5  0.60 Найдите напряженность поля, создаваемого диском радиуса $R$, равномерно заряженного по поверхности с плотностью заряда $\sigma$ на его оси на расстоянии $x$ от центра.

1 M1 $$E_n=\frac{{\sigma}\Omega}{4\pi\epsilon_0}
$$
0.20
2 M1 $$\Omega=2{\pi}\left(1-\frac{x}{\sqrt{x^2+R^2}}\right)
$$
0.30
3 M1 $$E=\frac{\sigma}{2\epsilon_0}\left(1-\frac{x}{\sqrt{x^2+R^2}}\right)
$$
0.10
4 M2 $$E=\frac{\sigma{x}}{2\epsilon_0}\int_0^{R}\frac{rdr}{(r^2+x^2)^\frac{3}{2}}
$$
0.20
5 M2 $$E=\frac{\sigma}{2\epsilon_0}\left(1-\frac{x}{\sqrt{x^2+R^2}}\right)
$$
0.40
B1  0.20 Найдите потенциал на оси кольца на расстоянии $x$ от его центра.

1 $$\varphi=0
$$
0.20
B2  1.00 Найдите модуль напряженности поля в центре кольца.

1 Метод нахождение поля одной половины кольца 0.50
2 $$E=\frac{\lambda}{{\pi}R\epsilon_0}
$$
0.50
B3  0.80 Найдите модуль напряженности поля на оси кольца на расстоянии $x$ от его центра.

1 Используется результат пункта $B2$ либо находится составляющая поля одной половины кольца, перпендикулярная оси 0.50
2 $$E=\frac{4kQR}{{\pi}(R^2+x^2)^\frac{3}{2}}=\frac{\lambda{R}^2}{{\pi}\epsilon_0(R^2+x^2)^\frac{3}{2}}
$$
0.30
C1  0.30 Чему равен модуль напряженности электрического поля на расстоянии $r < R$ от оси цилиндра?

1 $$E=0
$$
0.30
C2  2.00 Найдите модуль напряженности поля в центре основания цилиндра $O$.

1 M1 Использован метод виртуальных перемещений и получено выражение
$$d\varphi=-2k{\pi}{\sigma}dx
$$
1.50
2 M1 $$E_O=\frac{\sigma}{2\epsilon_0}
$$
0.50
3 M2 $$E_O=\frac{\sigma{R}}{2\epsilon_0}\int_0^{\infty}\frac{xdx}{(R^2+x^2)^\frac{3}{2}}
$$
1.00
4 M2 $$E_O=\frac{\sigma}{2\epsilon_0}
$$
1.00
C3  0.70 Рассмотрим точку $A$ в основании цилиндра, находящуюся на расстоянии $r < R$ от точки $O$. Найдите проекцию вектора напряженности электрического поля на линию $OA$.

1 Обоснованно получен ответ
$$E_r=0
$$
0.70
C4  3.00 Для рассматриваемого полубесконечного цилиндра найдите модуль напряженности электрического поля в точке $A$, находящейся на расстоянии $r=0,\!9R$ от точки $O$.

1 Идея использования теоремы о циркуляции для прямоугольного контура 1.20
2 Радиальная составляющая поля цилиндра на малой высоте $dh$ над плоскостью его торца эквивалентно полю кольца радиуса $R$ и толщины $dh$ 0.60
4 Выражение для поля кольца толщины $dh$
$$E_r=\frac{\sigma{y(x)}{dh}}{R}
$$
0.20
5 $$E_A=E_O+k{\sigma}S_{AB}
$$
0.20
6 Посчитана площадь под графиком $y(x)$
$$S_{AB}=2,8\pm0,1
$$
0.50
7 $$E_A=(0,72\pm0,02)\frac{\sigma}{\epsilon_0}
$$
0.30