Logo
Logo

Аномальный магнитный момент мюона

A1  1.00 Для мюона из пучка найдите отличие скорости движения от скорости света $\Delta v = c - v$ (формулу и численное значение).

Энергия релятивистской частицы выражается через импульс
$$
E = \sqrt{p^2 c^2 + m_\mu^2 c^4},
$$
а скорость
$$
v = \frac{c^2 p}{E} = \frac{c p}{\sqrt{p^2 + m_\mu^2 c^2}}.
$$
Тогда искомая разность
$$
\Delta v = c - v = c\left( 1 - \frac{p}{\sqrt{p^2 + m_\mu^2 c^2}}\right) \approx \frac{1}{2} c \left( \frac{m_\mu c}{p}\right)^2 \approx 1.75 \cdot 10^5~\text{м}/\text{с}.
$$
Для приведенных в условии численных значений можно пользоваться приближенной формулой, отличие от точного значения возникает только в четвертом знаке.

Ответ: $$
\Delta v = c\left( 1 - \frac{p}{\sqrt{p^2 + m_\mu^2 c^2}}\right) \approx \frac{1}{2} c \left( \frac{m_\mu c}{p}\right)^2 \approx 1.75 \cdot 10^5~\text{м}/\text{с}.
$$

A2  0.50 Для мюона из пучка найдите кинетическую энергию $E_k$, то есть полную энергию минус энергию покоя (формулу и численное значение в ГэВ).

Используем выражение для энергии через импульс из предыдущего пункта. Отметим, что с достаточной точностью можно было бы использовать и выражение для ультрарелятивистского случая $E \approx pc$.

Ответ: $$
E_k = \sqrt{p^2 c^2 + m_\mu^2 c^4} - m_\mu c^2 \approx 2.99~\text{ГэВ}
$$

A3  1.00 Найдите радиус орбиты мюона $R$ и период его обращения $T$. (Формулы и численные значения.)

Из релятивистского уравнения движения
$$
\frac{d\vec{p}}{dt} = q \vec{v} \times \vec{B} = \frac{q}{\gamma m_\mu} \vec{p} \times \vec{B}
$$
следует, что при движении магнитном поле импульс, а значит и скорость, остаются постоянными по модулю. Значит импульс только вращается с некоторой угловой скоростью,
$$
\frac{d\vec{p}}{dt} = \vec{\omega}_c \times \vec{p}, \quad \vec{\omega}_c = - \frac{q \vec{B}}{\gamma m}.
$$
Здесь $\omega_c$ — угловая скорость движения мюона. Значит период движения
$$
T = \frac{2\pi}{\omega_c} = \frac{2 \pi m \gamma}{q B} = 1.49 \cdot 10^{-7}~\text{с}.
$$
Тогда радиус
$$
R =\frac{v T}{2 \pi} = \frac{\gamma m}{q B} v = \frac{\gamma m}{q B} \frac{p c^2}{E} = \frac{p}{q B} = 7.12~\text{м}.
$$

Ответ: $$
T = \frac{2 \pi m_\mu \gamma}{q B} = 1.49 \cdot 10^{-7}~\text{с}, \quad R = \frac{p}{q B} = 7.12~\text{м}.
$$

A4  0.80 Из-за нестабильности мюон может двигаться по окружности только ограниченное время. Найдите число оборотов $N$, которое он совершит до распада.

За счет релятивистского замедления времени в лабораторной системе отсчета время жизни мюона $t = \gamma \tau$, поэтому число оборотов
$$
N = \frac{t}{T} = \gamma \tau \frac{q B}{2\pi m_\mu \gamma} = \frac{q B \tau}{2 \pi m_\mu} = 431.
$$

Ответ: $$
N = \frac{q B \tau}{2 \pi m_\mu} = 431.
$$

A5  0.70 Запишите выражение для скорости изменения вектора спина мюона $d\vec{s}/dt$, выразите ответ через вектор индукции магнитного поля $\vec{B}$, $\vec{s}$, $g_\mu$ и фундаментальные постоянные.

На магнитный момент в магнитном поле действует момент сил
$$
\vec{M} = \vec{\mu} \times \vec{B},
$$
поэтому уравнение движения
$$
\frac{d\vec{s}}{dt} = \vec{M} = \vec{\mu} \times \vec{B} =g_\mu \frac{q}{2 m_\mu} \vec{s} \times \vec{B} = - g_\mu \frac{q \vec{B}}{2 m_\mu} \times \vec{s}.
$$

Ответ: $$
\frac{d\vec{s}}{dt} = - g_\mu \frac{q \vec{B}}{2 m_\mu} \times \vec{s}.
$$

A6  0.50 Найдите проекцию на ось $z$ угловой скорости прецессии спина мюона в магнитном поле $\omega_z$. Выразите ответ через $B$, $g_\mu$ и фундаментальные постоянные.

Из предыдущего пункта следует, что вектор угловой скорости прецессии магнитного момента равен
$$
\vec{\omega} = - g_\mu \frac{q \vec{B}}{2 m_\mu}.
$$
Отсюда проекция на ось $z$

Ответ: $$
\omega_z = - g_\mu \frac{q B}{2 m_\mu}.
$$

B1  0.50 Найдите проекции скорости $\vec{v}_C$ системы $C$ относительно лабораторной системы отсчета $A$. Выразите ответ через $v_x$, $v_y'$.

Используем формулы для сложения скоростей из условия. При этом $v_x' = 0$ (компонента скорости системы $C$ вдоль оси $x$), а значит знаменатель $1 + v'x v_x/c^2 = 1$.

Ответ: $$
v_{Cx} = v_x, \quad v_{C y} = v_{y}' \sqrt{1 - v_x^2/c^2} = v_{y}'/\gamma
$$

B2  0.70 Найдите проекции $\vec{v}_A''$ системы отсчета $A$ относительно системы отсчета $C$ на оси $x'', y''$. При вычислениях учитывайте малость $v_y''$.

Заметим, что если система отсчета $B$ движется относительно $A$ со скоростью $\vec{v}$, то система $A$ движется относительно $B$ со скоростью $- \vec{v}$. Поэтому $B$ движется относительно $C$ со скоростью $- v_y''$, a $A$ движется относительно $B$ со скоростью $-v_x$. Найдем скорость $A$ относительно $C$ с помощью формул сложения скоростей. При этом коэффициент $\gamma$ определяется скоростью $v_y'$:
$$
\gamma = \frac{1}{\sqrt{1 - v_y^{\prime 2}/c^2}} \approx 1,
$$
поскольку можно ограничиться слагаемыми первого порядка по $v_y'$. При этом скорости движения систем по-прежнему перпендикулярны, и знаменатель в формулах для сложения скоростей равен 1.

Ответ: $$
v_{Ax}'' = - v_x, \quad v_{Ay}'' = - v_y '.
$$

B3  0.60 Оказывается, что $\vec{v}_A'' \neq - \vec{v}_C$. Это связано с тем, что оси подвижной системы координат повернуты относительно осей лабораторной системы координат. Поэтому все вектора, связанные с системой отсчета $C$ также повернуты относительно системы отсчета $A$. Найдите угол поворота $\Delta \theta$, определяемый как угол между векторами $- \vec{v}_A''$ и $\vec{v}_C$. Этот угол считается положительным, если поворот от первого вектора ко второму производится в направлении против часовой стрелки, если смотреть со стороны оси $z$. (Оси $x,y,z$ образуют правую тройку.) Выразите ответ через $v_x$, $v_y'$, $\gamma = 1/\sqrt{1 - v_x^2/c^2}$, $c$.

Вычислить угол между двумя векторами можно определить, найдя их векторное произведение (модуль векторного произведения двух векторов $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \alpha$, где $\alpha$ — угол между векторами). Пусть $\vec{e}_x$ — единичный вектор вдоль оси $x$, $\vec{e}_y$ — вдоль оси $y$, $\vec{e}_z$ — вдоль $z$. Тогда
$$
- \vec{v}_A'' \times \vec{v}_C = (v_x \vec{e}_x + v_y' \vec{e}_y) \times (v_x \vec{e}_x + (v_y' /\gamma)\vec{e}_y) = v_x v_y' \left( \frac{1}{\gamma} - 1\right) \vec{e}_z.
$$
Поскольку оба вектора лежат в плоскости $xy$, их векторной произведение направлено вдоль $z$, причем положительному знаку проекции на $z$ отвечает поворот на положительный угол. При вычислениях с точностью до первого порядка по $v_y'$ можно считать $|\vec{v}_A''| = |\vec{v}_C| = v_x$, поэтому угол поворота

Ответ: $$
\Delta \theta = \frac{1}{v_x^2} v_x v_y' \left( \frac{1}{\gamma} - 1\right) = - \frac{v_y'}{v_x} \left( 1 - \frac{1}{\gamma}\right).
$$

B4  1.00 Пусть относительно лабораторной системы отсчета $A$ со скоростью $\vec{v}$, направленной вдоль оси $x$ движется частица. Ускорение частицы в рассматриваемый момент направлено вдоль оси $y$, его проекция равна $a_y$. Система отсчета $B$ — сопутствующая для частицы в данный момент времени, то есть в ней скорость частицы равна нулю и поэтому $B$ движется со скоростью $v$ вдоль оси $x$. Через время $dt$ по часам лабораторной системы отсчета скорость частицы будет равна $\vec{v} + d\vec{v}$, а соответствующей сопутствующей системой отсчета будет $C$. Из предыдущего пункта следует, что при ускоренном движении оси сопутствующей системы координат будут вращаться. Используя результаты предыдущего пункта, получите проекцию угловую скорости вращения сопутствующей системы отсчета $\omega_T$ (угловая скорость Томасовской прецессии) на ось $z$ (в рассматриваемом случае вращение все время происходит вдоль оси $z$). Выразите ответ через $v_x$, $a_y$, $\gamma$.

Через время $dt$ в лабораторной системе отсчета частица приобретет дополнительную скорость $v_y = a_y dt$, в системе отсчета $B$, которая была сопутствующей для частицы в начальный момент времени, это отвечает скорости
$v_y' = \gamma v_y$. Это соотношение можно получить как из результата B1, так и напрямую из формул сложения скоростей (лабораторная система отсчета движется относительно $B$ со скоростью $-v_x$, скорость частицы относительно лабораторной системы $\vec{v} = (v_x, v_y)$):
$$
v_y' = \frac{v_y \sqrt{1 - v_x^2/c^2}}{1 - v_x^2 /c^2} = \frac{v_y}{\sqrt{1- v_x^2/c^2}} = \gamma v_y.
$$
Тогда угол поворота
$$
d\theta = - \frac{\gamma a_y dt}{v_x} \left( 1- \frac{1}{\gamma}\right),
$$
откуда угловая скорость вращения
$$
\omega_T = \frac{d \theta}{dt} = - \frac{a_y}{v_x} (\gamma - 1).
$$
Здесь мы учли, что знаки выбраны таким образом, что положительному углу поворота отвечает положительная проекция угловой скорости на ось $z$.

Ответ: $$
\omega_T = - \frac{a_y}{v_x} (\gamma - 1).
$$

B5  0.70 Пусть мюон движется в однородном магнитном поле $B$, направленном вдоль оси $z$, скорость мюона перпендикулярна магнитному полю. Найдите проекцию угловой скорости Томасовской прецессии на ось $z$. Выразите ответ через $B$, $q$, $m_\mu$, $\gamma$.

Из уравнения движения в магнитном поле
$$
\frac{d\vec{p}}{dt}= m_\mu \frac{d(\gamma \vec{v})}{dt} = q \vec{v} \times \vec{B}
$$
с учетом того, что $\gamma$ постоянна, находим проекцию ускорения
$$
a_y = - \frac{q v_x B}{\gamma m_\mu},
$$
тогда угловая скорость

Ответ: $$
\omega_T = \frac{q B}{\gamma m_\mu} (\gamma -1)
$$

С1  0.70 Запишите выражение для проекции на ось $z$ угловой скорости $\omega_s$ прецессии спина мюона относительно лабораторной системы отсчета. Выразите ответ через $B$, $g_\mu$, $q$, $m_\mu$, $\gamma$.

Полная скорость прецессии складывается из найденной в A6 скорости прецессии в магнитном поле и из прецессии Томаса:

Ответ: $$
\omega_s = \omega_z + \omega_T = - g_\mu \frac{q B}{2 m_\mu} + \frac{q B}{\gamma m_\mu} (\gamma -1)
$$

С2  0.50 На практике удобнее рассматривать поворот спина относительно направления импульса мюона. Запишите выражение для угловой скорости $\omega_a$ вращения спина мюона относительно направления его импульса (то есть для производной по времени угла между импульсом и спином). Выразите ответ через $B$, $a_\mu$, $q$, $m_\mu$, $\gamma$.

Импульс мюона вращается с угловой скоростью, которая равна угловой скорости движения мюона в магнитном поле, эта угловая скорость $\omega_c$ уже найдена в A3, ее проекция на ось $z$
$$
\omega_z = - \frac{q B}{\gamma m_\mu}
$$
Тогда угловая скорость спина относительно импульса — разность угловых скоростей спина и импульса (все вращения происходят вокруг оси $z$):
$$
\omega_a = \omega_s - \omega_c = - g_\mu \frac{q B}{2 m_\mu} + \frac{q B}{\gamma m_\mu} (\gamma -1) + \frac{q B}{\gamma m_\mu} = - g_\mu \frac{q B}{2 m_\mu} + \frac{q B}{ m_\mu}.
$$
Используя соотношения $g_\mu = 2(1 + a_\mu)$, окончательно получим

Ответ: $$
\omega_a = - a_\mu \frac{q B}{ m_\mu}.
$$

С3  0.80 Экспериментальное значение частоты прецессии магнитного момента относительно импульса мюона составляет $f_a = 229 081~\text{Гц}$. Получите формулу для аномального магнитного момента мюона $a_\mu$. Выразите ответ через $f_a$, $B$, $q$, $m_\mu$, $\gamma$. Найдите численное значение $a_\mu$.

Частота связана с угловой скоростью соотношением $f_a = \omega_a/2\pi$, поэтому
$$
a_\mu = \frac{m_\mu \omega_a}{q B} = \frac{2\pi f_a m_\mu}{q B} = 0.00117.
$$
Поскольку не указано направление прецессии спина, нельзя определить знак $a_\mu$, на самом деле $a_\mu > 0 $.

Ответ: $$
a_\mu = \frac{2\pi f_a m_\mu}{q B} = 0.00117.
$$