Logo
Logo

Оптика воды

Разбалловка

A1  0,30 Укажите, какая из мод имеет наименьшую собственную частоту. Обоснуйте свой ответ.

A1. 1 Обоснованное утверждение о равенстве частот мод 1 и 3 0,20
A1. 2 Ответ мода 2 0,10
A2  0,90 Найдите длины волн $\lambda$ и частоты $\nu$, соответствующих локальным максимумам коэффициента поглощения.

A2. 1 Сняты длины волн 6 × 0,10
A2. 2 Длины волн пересчитаны в частоты 6 × 0,05
A3  1,20 Найдите полуширину $\Delta\nu$ локальных максимумов коэффициента поглощения.

A3. 1 Сняты длины волн 6 × 0,10
A3. 2 Длины волн пересчитаны в частоты 6 × 0,10
A4  1,20 На основе полученных результатов определите кратность частот, соответствующих локальным максимумам, а также найдите основную резонансную частоту $\nu_0$ колебаний молекулы воды. Графически определите погрешность $\nu_0$.

A4. 1 Предполагаемые значения кратности 6 × 0,05
A4. 2 График 0,30
A4. 3 Ответ для $\nu_0$ 0,30
A4. 4 Обоснованный ответ для $\Delta\nu_0$

Примечание: привычное «качание» прямой не работает, потому что прямая по условию должна проходить строго через ноль. Погрешности порядка $10~ТГц$ не оцениваются

0,30
B1  1,50 Получите приближённое выражение для $\mathcal J(\psi)$, считая углы $\psi$ малыми.

B1. 1 Зависимость $\rho(\psi)$ раскрыта по малости 0,60
B1. 2 $\sin\psi$ раскрыт по малости 0,30
B1. 3 Ответ 0,60
B2  5,00 Линеаризуйте полученную зависимость и найдите показатель преломления жидкости $n$.

Указание: Не обязательно использовать все точки, чтобы получить хороший результат.

B2. 1 Обосновано количество используемых точек 0,20
B2. 2 Использовано $[20;40]$ точек 0,60
B2. 3 Использовано $[10;20)$ или $(40,50]$ точек 0,30
B2. 4 Использовано иное число точек 0,00
B2. 5 Правильная линеаризация $\mathcal J(\psi^2)$ 0,20
B2. 6 Точки пересчитаны

Примечание: Если строится линеаризованный график и проводится касательная в нуле, ставится полный балл за предыдущие пункты.

40 × 0,05
B2. 7 Построен график 0,30
B2. 8 Из графика получено значение $\alpha$ 0,20
B2. 9 Уравнение, позволяющее получить $n$ из $\alpha$ 0,50
B2. 10 Ответ $n\in[1.57;1.61]$ 1,00
B2. 11 Ответ $n\in[1.54;1.64]$ 0,60
B2. 12 Ответ $n\in[1.5,1.7]$ 0,30
B2. 13 Ответ $n$ не попадает в ворота None