1 $U I=M \omega_{1}+I^{2}(r+R)$ | 0.30 |
|
2 $M=\alpha I$ | 0.10 |
|
3 $U=\alpha \omega_{1}+I(r+R)$ | 0.20 |
|
4 $U=\alpha \omega_{2}+2 I(r+R)$ | 0.20 |
|
5 $U=\alpha \omega_{n}+n I(r+R)$ | 0.20 |
|
6 $\omega_{n}=(n-1) \omega_{2}-(n-2) \omega_{1}$ | 0.20 |
|
7 $t_{n}=\frac{t_{1} t_{2}}{(n-1) t_{1}-(n-2) t_{2}}=\frac{t_{1} t_{2}}{t_{2}-(n-1) \Delta t}$ | 0.20 |
|
8 $t_{n}>0$ | 0.40 |
|
9 $n_{\text {max }}=\left[\frac{t_{2}}{\Delta t}+1\right]=\left[\frac{t_{1}+2 \Delta t}{\Delta t}\right]$ | 0.40 |
|
10 $n_{\max }=10$ | 0.20 |
|
1 $t_{\max }=\frac{t_{1} t_{2}}{t_{2}-\left(n_{\max }-1\right) \Delta t}=\frac{t_{1}\left(t_{1}+\Delta t\right)}{t_{1}-\left(n_{\max }-2\right) \Delta t}$ | 0.40 |
|
2 $t_{\max }=1.01 \cdot 10^{3} ~с$ | 0.20 |
|