Logo
Logo

Переход жидкость-пар

A1  1,00 Запишите уравнение, которое позволит с помощью метода простой итерации найти величину $\dfrac{T_\mathrm c}{L_0}$, и уравнения, с помощью которых отсюда можно будет найти сами величины $T_\mathrm c$ и $L_0$.

A1. 1 $\frac{T_\mathrm c}{L_0}=\frac{T_2}{L_2}\operatorname{arth}\left[\frac{L_2}{L_1}\operatorname{th}\left[\frac{L_1}{T_1}\times\frac{T_\mathrm c}{L_0}\right]\right]$ 0,40
A1. 2 $L_0=L_1\Big/\operatorname{th}\left[\frac{L_1}{T_1}\times\frac{T_\mathrm c}{L_0}\right]$ 0,30
A1. 3 $T_\mathrm c=L_0\times\frac{T_\mathrm c}{L_0}$ 0,30
A2  4,00 Для каждой пары точек найдите величины $T_\mathrm c$ и $L_0$.

Пересчитанные точки проверяются компьютерной программой. Актуальную версию можно найти разделе Материалы
A2. 3 Пересчитаны точки для $L_0$ 40 × 0,05
A2. 4 Пересчитаны точки для $T_\mathrm c$

Примечание: узкие ворота (2) – 0.25%, широкие (1) – 0.5%

40 × 0,05
A3  0,50 Найдите средние арифметические полученных вами значений, $\overline T_\mathrm c$ и $\overline L_0$.

A3. 2 Найдены $\overline T_\mathrm c=655.3~К$, $\overline L_0=2404~\frac{кДж}{кг}$

Примечание: ворота – 0.25%

2 × 0,25
B1  0,30 Запишите формулу, которая позволяет с помощью метода простой итерации найти $L\left(\dfrac1T\right)$ по значениям $\overline L_0$ и $\overline T_\mathrm c$, полученным в предыдущей части.

B1. 1 $L=\overline L_0\operatorname{th}\left[\frac{\overline T_\mathrm c}{\overline L_0}\times L\times\frac1T\right]$ 0,30
B2  2,00 С помощью этой формулы найдите зависимость $L\left(\dfrac1T\right)$ в диапазоне температур от $t=100~{}^\circ\mathrm C$ до $T_\mathrm c$.

Примечание: Пересчитайте не менее 20 точек, старайтесь покрыть диапазон однородно. Это увеличит точность ваших дальнейших расчётов.

B2. 1 Правильно посчитаны точки внутри диапазона $1/T\in(1.536;2.680)\cdot10^{-3}$

Примечание: точки оцениваются по значениям $\overline{T_\mathrm c}$ и $\overline{L_0}$, полученным в предыдущей части

20 × 0,10
B3  0,50 Постройте график $L\left(\dfrac1T\right)$ в диапазоне от $t=100~{}^\circ\mathrm C$ до $T_\mathrm c$.

График:
B3. 2 оси; 0,10
B3. 3 масштаб; 0,10
B3. 4 нанесены точки; 0,20
B3. 5 проведена сглаживающая кривая 0,10
B4  1,00 Вычислите площадь $S$ под графиком.

B4. 1 $S=2.04\cdot10^3~\frac{Дж}{кг\cdotК}$

Примечание: ответ оценивается по значениям $\overline{T_\mathrm c}$ и $\overline{L_0}$, полученным в предыдущей части

2 × 0,50
B5  0,70 Выразите давление $p_\mathrm c$ в критической точке через $S$ и вычислите его с тремя значащими цифрами, если давление $p_\text{н}(100~{}^\circ\mathrm C)=1.013\cdot10^5~\text{Па}$.

B5. 1 Формула $p_\mathrm c=p_н(100~{}^\circ\mathrm С)\exp\left[{\frac{\mu S}R}\right]$ 0,40
B5. 2 Численный ответ $p_\mathrm c=8.36\cdot10^6~Па$

Примечание: ворота – 10%

0,30